Evolving cognitive and social experience in Particle Swarm Optimization through Differential Evolution: A hybrid approach

نویسندگان

  • Michael G. Epitropakis
  • Vassilis P. Plagianakos
  • Michael N. Vrahatis
چکیده

In recent years, the Particle Swarm Optimization has rapidly gained increasing popularity and many variants and hybrid approaches have been proposed to improve it. In this paper, motivated by the behavior and the spatial characteristics of the social and cognitive experience of eachparticle in the swarm,wedevelop ahybrid framework that combines theParticle Swarm Optimization and the Differential Evolution algorithm. Particle Swarm Optimization has the tendency to distribute the best personal positions of the swarm particles near to the vicinity of problem’s optima. In an attempt to efficiently guide the evolution and enhance the convergence, we evolve the personal experience or memory of the particles with the Differential Evolution algorithm, without destroying the search capabilities of the algorithm. The proposed framework canbeapplied to anyParticle SwarmOptimization algorithmwithminimal effort. To evaluate the performance and highlight the different aspects of the proposed framework, we initially incorporate six classic Differential Evolution mutation strategies in the canonical Particle Swarm Optimization, while afterwards we employ five state-of-theart Particle SwarmOptimization variants and four popular Differential Evolution algorithms. Extensive experimental results on 25 high dimensional multimodal benchmark functions along with the corresponding statistical analysis, suggest that the hybrid variants are very promising and significantly improve the original algorithms in the majority of the studied cases. 2012 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

An efficient approach for availability analysis through fuzzy differential equations and particle swarm optimization

This article formulates a new technique for behavior analysis of systems through fuzzy Kolmogorov's differential equations and Particle Swarm Optimization. For handling the uncertainty in data, differential equations have been formulated by Markov modeling of system in fuzzy environment. First solution of these derived fuzzy Kolmogorov's differential equations has been found by Runge-Kutta four...

متن کامل

Evolving Additive Trees for Modeling Biochemical Systems

This paper presents a hybrid evolutionary method for identifying a system of ordinary differential equations (ODEs) from the observed time series. In this approach, the tree-structure based evolution algorithm and particle swarm optimization (PSO) are employed to evolve the architecture and the parameters of the additive tree models for the problem of system identification. Experimental results...

متن کامل

Evolutionary Computation Techniques for Optimizing Fuzzy Cognitive Maps in Radiation Therapy Systems

The optimization of a Fuzzy Cognitive Map model for the supervision and monitoring of the radiotherapy process is proposed. This is performed through the minimization of the corresponding objective function by using the Particle Swarm Optimization and the Differential Evolution algorithms. The proposed approach determines the cause–effect relationships among the concepts of the supervisor–Fuzzy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 216  شماره 

صفحات  -

تاریخ انتشار 2012